LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2019
16/17/18UMT1MCO1- ALGEBRA AND CALCULUS - I

Date: 03-04-2019
Dept. No. \square

PART-A

ANSWER ALL QUESTIONS.

$(2 \times 10=20)$

1. Find the $n^{\text {th }}$ derivative of $e^{a x}$.
2. Find the slope of the tangent to the curve $r=a(1-\cos \theta) \mathrm{at}=\frac{\pi}{2}$.
3. Write the necessary condition for maxima and minima of the function $f(x, y)$.
4. Define Saddle point.
5. Find the radius of curvature at the point (x, y) on the curve $y=c \cosh \left(\frac{x}{c}\right)$.
6. Find the pedal equation of a curve $r=a e^{\theta \cot \alpha}$.
7. Define Reciprocal equation.
8. Form the equation one of whose root is $2-\sqrt{-3}$.
9. State Descarte's rule of sign.
10. Increase by 2 the roots of the equation $x^{4}-x^{3}-10 x^{2}+4 x+24=0$.

PART-B

Answer any FIVE questions.

(5x8=40)
11. Show that the parabolas $r=a \sec ^{2} \frac{\theta}{2}$ and $r=b \operatorname{cosec}^{2} \frac{\theta}{2}$ intersect at right angle.
12. Find the minimum value of the function $4 x^{2}+9 y^{2}+6 x y-8 x-24 y+4$.
13. Find the radius of curvature at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ to the curve $\sqrt{x}+\sqrt{y}=1$.
14. Solve the equation $3 x^{5}-4 x^{4}-42 x^{3}+56 x^{2}+27 x-36=0$. Given that $\sqrt{2}+\sqrt{5}$ is a root of it.
15. Show that the equation $3 x^{5}-2 x^{3}-4 x+2=0$ has three real and two imaginary roots.
16. Find the radius of curvature at any point on the curve $r^{n}=a^{n} \cos n \theta$.
17. Solve the equation $x^{3}-4 x^{2}-3 x+18=0$, given that two of its roots are equal.
18. Find the $n^{\text {th }}$ derivative of $\sin 2 x \sin 4 x \sin 6 x$.

PART-C

Answer any TWO questions.

19. (a) If $y=a \cos (\log x)+b \sin (\log x)$. Prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$.
(b) Find the minimum value of $x^{2}+y^{2}+z^{2}$ subject to the constraint $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$.
(10+10)
20. Find the Evolute of the Rectangular Hyperbola $x y=c^{2}$.
21. (a) Solve the equation $x^{3}-12 x^{2}+39 x-28=0$ whose roots are in Arithmetic Progression.
(b) Solve : $3 x^{6}+x^{5}-27 x^{4}+27 x^{2}-x-3=0$. (05+15)
22. Using Horner's method, find the positive root of $x^{3}-3 x+1$ which lies between 1 and 2 , correct to two decimal places.
